Skip to main content

Insulin In Diabetes Treatment

 "Diabetes", a metabolic disorder affecting majority of the population world over, is known to mankind and is in existence for many decades now. Research directed to find the exact cause for this condition, brought out the existence of "insulin", the principle hormone that controls sugar levels.


Every kid is introduced to magic early in childhood. The fascination of things happens Ning with just a snap of fingers, twitch of a nose, magical wands, fairy dust or magical potions is known not only to kids but intrigues the adult generation as well. Nonetheless, we are so engrossed in fiction that we tend to forget the reality of life; say our body's biological mechanics which is nothing but magical. Ever wondered how the food that we eat, rightly gets digested and absorbed by the tiny cells of our body? (Mind you, food and water are the only means of human sustenance!) Ever imagined how the whole foolproof procedure of absorption of food in our body works so meticulously? The one-word answer to it is - Insulin!

Magic that is biologically rooted in our body, saves us after every meal!

When we observe our body at a cellular level, the food (carbohydrates, fats, etc.) that we consume is broken down into sugar (glucose); this sugar (that cannot enter the cells directly) needs a pass key to enter the cells of the body. Beta cells in the pancreas are signaled to release Insulin in the bloodstream, which acts as the pass key for entry of glucose in the cells. After a heavy meal, the levels of glucose in the blood shoots up, which is compensated by the release of insulin that allows the glucose to enter the cells and carry out cellular respiration (a cycle that uses up glucose to generate energy in the form of ATP). Also, very high levels of sugar in the body is stored in liver (again with the help of insulin) to be used up when blood sugar levels are low.

This symphony of insulin, a biochemical/hormonal activity of the body, at a cellular level is more like an enchantment, most often gone unnoticed. Also, ever growing sedentary lifestyle and unreasonable food habits have become the sole reason for fluctuations at cellular level, again gone unnoticed! Exceeding to a limit where the body cannot take it anymore and starts showing signs and symptoms of deteriorating health. In case of insulin fluctuations, when the body does not produce enough insulin (type 1 diabetes) or the cells of the body become resistant to insulin (type 2 diabetes), an individual develops hyperglycemic condition that renders long term complications like nephropathy, neuropathy, fertility issues, etc., if unattended.

Yet again, insulin comes to the rescue in battling the diabetic condition in the form of treatment/medication. So, when the body is unable to naturally release insulin (or becomes resistant to it) to maintain homeostasis of energy and metabolism, this hormone is injected as an external source to aid the body. The various types of insulin used to treat diabetes is based on the peculiar characteristics of insulin to be injected, those are,

Characteristics of Insulin
- Onset - length of time before insulin reaches the blood stream to lower blood glucose
- Peak time-time during which insulin is at maximum strength to lower blood glucose
- Duration - for how long does insulin continue to lower blood glucose

Insulin is a biologically active monomerize molecule composed of two chains of amino acids-A and B chain. Both the chains, connected by a desulphated bridge are composed of 21 and 30 amino acids, respectively.

Mode of action Insulin and glucagon are the two principal hormones secreted by the pancreas and are involved in maintaining blood sugar levels. The ideal blood glucose levels are expected to be between 70 - 100 mg/dL. During conditions of hypoglycemia (low blood glucose), the alpha cells of pancreas are triggered to release glucagon, which aids in release of glucose from liver and also for breakdown of other stored forms of energy to release glucose. During conditions of hyperglycemia (high blood glucose levels), the beta cells of pancreas are stimulated to release insulin, which triggers the different body cells to absorb glucose, resulting in lowering the net blood glucose levels.

Insulin aids in maintaining blood glucose levels by
1. Facilitating uptake of blood glucose by adipose tissue, muscle cells, etc.
2. Stimulating liver to store excess glucose as glycogen, another stored form of energy
Apart from glucose level maintenance, insulin is also involved in promoting fatty acid synthesis, stimulating uptake of amino acids, preventing fat breakdown, etc.

Insulin in diabetes treatment
Until the 1980s, pancreas from animals like dogs and pigs were widely used for insulin production. But with increase in the number of affected with type II diabetes (inability to utilize insulin), the demand for external supply of insulin increased. Hence, the focus of research shifted to using highly advanced technology for synthesizing artificial human insulin in high quantities

Synthesis of Insulin
Few popularly used techniques for insulin production include:

- Recombinant DNA Technology (RDT) This involves insertion of the human insulin coding gene into plasmid from a bacterium. Once within the bacteria, the genes are triggered to synthesise either the A or B chains of insulin. When sufficient A and B chains are produced by the cells, they are harvested and purified.

The two chains are then combined chemically in the lab to form a complete insulin molecule which is identical to that produced by humans.

Pancreatic transplantation

Transplantation of pancreas has emerged to be a great treatment strategy especially for recovery from type I diabetes, as this move can completely negate use of external insulin requirement. However, limitation in the number of donors, along with higher chances of graft rejection are the major blocks in most of the cases.

- Insulin pump
It is a device for the treatment of diabetes mellitus, which is attached to the skin and delivers the required amount of insulin through a catheter placed under the skin. The slow-release mechanism of the insulin pump mimics working of pancreas and efficiently metabolises sugar. It is found to be very effective compared to multiple insulin injections in treating diabetes.

Working of insulin pump
An insulin pump supplies insulin 24 hrs either rapidly or in a slow-release fashion as per the requirements, through a catheter. The insulin gets released in 3 doses.

1. Basal dose
This dose involves continuous release of insulin for 24 hrs to maintain a balance of blood sugar levels between food intake intervals.
2. Bolus dose
Post any meal, the glucose levels sharply increase, and to counter this surge, a high-level bolus dose of insulin is released.
3. Correction of supplemental doses
In case of high blood glucose levels, before a meal intake, this corrective dosage helps to regulate high glucose levels.

Advantages of insulin pump
1. Prevents inconvenience caused by frequent insulin injections.
2. Improves the average blood glucose levels i.e., HbA1c levels.
3. Reduces episodes of very low or high insulin levels.
4. Prevents the harmful effects of long-lasting insulin in blood.
5. Prevents rapid changes in blood glucose levels which are common episodes in insulin injection cases.
6. No restrictions in meal timings, due to flexibility provided by the pump.
Few disadvantages include inconvenience to carry around as it is attached to the body, expensive and can malfunction.

All said and done, it is still better to bring in harmony in the world with respect to diabetes by inculcating lifestyle changes such as nutritional balanced diet, regular exercise, controlling blood pressure, etc.



Comments

Popular posts from this blog

What does having a high C-reactive protein level indicate?

  What’s a C-reactive Protein Test? A Sneak Peek If you face  cholesterol   issues, your health care professional must have advised you to reduce it by eliminating the bad cholesterol or  LDL    from your system. High cholesterol levels can clog the arteries leading to higher chances of heart attacks or strokes in both men and women. A CRP or  C-reactive protein  test checks your body for this substance that arises in the  liver . It is known to increase due to inflammation in the body which goes on to the arteries by ultimately blocking or damaging them. CRP tests help indicate signs of cardiovascular diseases along with  auto-immune diseases  and are common for those going through  rheumatoid arthritis  and lupus. A  CRP test  is considered a basic  blood tests  that is then tested in a lab and checked by your doctor. So if you are going in for a  CRP test  soon, check out the next section t...